Part Number Hot Search : 
C7SZ1 MP7720DP 00095 M2940 9006K ATMEGA32 0M000 PACDN005
Product Description
Full Text Search
 

To Download IR2132STR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features n floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune n gate drive supply range from 10 to 20v n undervoltage lockout for all channels n over-current shutdown turns off all six drivers n independent half-bridge drivers n matched propagation delay for all channels n outputs out of phase with inputs description the ir2132 is a high v oltage, high speed power mosfet and igbt driver with three independent high and low side referenced output channels. proprietary hvic technology enables ruggedized monolithic con- struction. logic inputs are compatible with 5v cmos or lsttl outputs. a ground-referenced operational amplifier provides analog feedback of bridge current via an exter nal current sense resistor. a current trip function which terminates all six outputs is also de- rived from this resistor. an open drain fault signal indicates if an over-current or undervoltage shutdown has occurred. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. propagation delays are matched to simplify use at high frequencies. the floating chan- nels can be used to drive n-channel power mosfets or igbts in the high side configuration which oper- ate up to 600 v olts. 3-phase bridge driver product summary v offset 600v max. i o +/- 200 ma / 420 ma v out 10 - 20v t on/off (typ.) 675 & 425 ns deadtime (typ.) 0.8 s packages typical connection data sheet no. pd-6.033e ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-165
ir2132 b-166 c ontrol i ntegrated c ircuit d esigners? m anual parameter value symbol definition min. max. units v b1,2,3 high side floating supply voltage v s1,2,3 + 10 v s1,2,3 + 20 v s1,2,3 high side floating offset voltage note 1 600 v ho1,2,3 high side floating output voltage v s1,2,3 v b1,2,3 v cc low side and logic fixed supply voltage 10 20 v ss logic ground -5 5 v lo1,2,3 low side output voltage 0 v cc v in logic input voltage ( hin1,2,3 , lin1,2,3 & itrip) v ss v ss + 5 v flt fault output v oltage v ss v cc v cao oper ational amplifier output voltage v ss 5 v ca- operational amplifier inver ting input voltage v ss 5 t a ambient temperature -40 125 c parameter v alue symbol definition min. max. units v b1,2,3 high side floating supply voltage -0.3 525 v s1,2,3 high side floating offset voltage v b1,2,3 - 25 v b1,2,3 + 0.3 v ho1,2,3 high side floating output voltage v s1,2,3 - 0.3 v b1,2,3 + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v ss logic ground v cc - 25 v cc + 0.3 v lo1,2,3 low side output voltage -0.3 v cc + 0.3 v in logic input voltage ( hin1,2,3 , lin1,2,3 & itrip) v ss - 0.3 v cc + 0.3 v flt fault output v oltage v ss - 0.3 v cc + 0.3 v cao oper ational amplifier output voltage v ss - 0.3 v cc + 0.3 v ca- operational amplifier inver ting input voltage v ss - 0.3 v cc + 0.3 dv s /dt allowable offset supply v oltage tr ansient 50 v/ns p d package power dissipation @ t a +25c (28 lead dip) 1.5 (28 lead soic) 1.6 w (44 lead plcc) 2.0 r q ja thermal resistance, junction to ambient (28 lead dip) 83 (28 lead soic) 78 c/w (44 lead plcc) 63 t j junction temperature 150 t s stor age t emperature -55 150 c t l lead temperature (soldering, 10 seconds) 300 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to v s0 . the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. additional information is shown in figures 50 through 53. note 1: logic operational for v s of (v s0 - 5v) to (v s0 + 600v). logic state held for v s of (v s0 - 5v) to (v s0 - v bs ). recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. all voltage parameters are absolute voltages referenced to v s0 . the v s offset rating is tested with all supplies biased at 15v differential. typical ratings at other bias conditions are shown in figure 54. v v
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-167 parameter v alue symbol definition figure min. typ. max. units t est conditions v ih logic 0 input voltage (out = lo) 21 2.2 v il logic 1 input voltage (out = hi) 22 0.8 v it,th+ itrip input positive going threshold 23 400 490 580 v oh high level output voltage, v bias - v o 24 100 mv v in = 0v, i o = 0a v ol low level output voltage, v o 25 100 v in = 5v, i o = 0a i lk offset supply leakage current 26 50 v b = v s = 600v i qbs quiescent v bs supply current 27 15 30 v in = 0v or 5v i qcc quiescent v cc supply current 28 3.0 4.0 ma v in = 0v or 5v i in+ logic 1 input bias current (out = hi) 29 450 650 v in = 0v i in- logic 0 input bias current (out = lo) 30 225 400 a v in = 5v i itrip+ high itrip bias current 31 75 150 itrip = 5v i itrip- low itrip bias current 32 100 na itrip = 0v v bsuv+ v bs supply undervoltage positive going 33 7.5 8.35 9.2 threshold v bsuv- v bs supply undervoltage negative going 34 7.1 7.95 8.8 threshold v ccuv+ v cc supply undervoltage positive going 35 8.3 9.0 9.7 threshold v ccuv- v cc supply undervoltage negative going 36 8.0 8.7 9.4 threshold r on,flt fault low on-resistance 37 55 75 w parameter v alue symbol definition figure min. typ. max. units t est conditions t on turn-on propagation delay 11 500 675 850 t off turn-off propagation delay 12 300 425 550 v in = 0 & 5v t r turn-on rise time 13 80 125 v s1,2,3 = 0 to 600v t f turn-off fall time 14 35 55 t itrip itrip to output shutdown prop. delay 15 400 660 920 v in , v itrip = 0 & 5v t bl itrip blanking time 400 v itrip = 1v t flt itrip to fault indication delay 16 335 590 845 v in , v itrip = 0 & 5v t flt,in input filter time (all six inputs) 310 v in = 0 & 5v t fltclr lin1,2,3 to fault clear time 17 6.0 9.0 12.0 v in , v itrip = 0 & 5v dt deadtime 18 0.4 0.8 1.2 v in = 0 & 5v sr+ operational amplifier slew rate (+) 19 4.4 6.2 sr- operational amplifier slew rate (-) 20 2.4 3.2 dynamic electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss , c l = 1000 pf and t a = 25c unless otherwise specified. the dynamic electrical characteristics are defined in figures 3 through 5. static electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss and t a = 25c unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1,2,3 & lin1,2,3 . the v o and i o parameters are referenced to v s0,1,2,3 and are applicable to the respective output leads: ho1,2,3 or lo1,2,3. v v/s s ns v a
ir2132 b-168 c ontrol i ntegrated c ircuit d esigners? m anual parameter v alue symbol definition figure min. typ. max. units t est conditions i o+ output high short circuit pulsed current 38 200 250 v o = 0v, v in = 0v pw 10 s i o- output low short circuit pulsed current 39 420 500 v o = 15v, v in = 5v pw 10 s v os operational amplifer input offset voltage 40 30 mv v s0 = v ca- = 0.2v i ca- ca- input bais current 41 4.0 na v ca- = 2.5v cmrr op. amp. common mode rejection ratio 42 60 80 v s0 =v ca- =0.1v & 5v psrr op. amp. power supply rejection ratio 43 55 75 v s0 = v ca- = 0.2v v cc = 10v & 20v v oh,amp op. amp. high level output v oltage 44 5.0 5.2 5.4 v v ca- = 0v, v s0 = 1v v ol,amp op. amp. low level output v oltage 45 20 mv v ca- = 1v, v s0 = 0v i src,amp op. amp. output source current 46 2.3 4.0 v ca- = 0v, v s0 = 1v v cao = 4v i src,amp op. amp. output sink current 47 1.0 2.1 v ca- = 1v, v s0 = 0v v cao = 2v i o+,amp operational amplifier output high short 48 4.5 6.5 v ca- = 0v, v s0 = 5v circuit current v cao = 0v i o-,amp operational amplifier output low shor t 49 3.2 5.2 v ca- = 5v, v s0 = 0v circuit current v cao = 5v static electrical characteristics -- continued v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss and t a = 25c unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1,2,3 & lin1,2,3 . the v o and i o parameters are referenced to v s0,1,2,3 and are applicable to the respective output leads: ho1,2,3 or lo1,2,3. ma db ma lead assignments 28 lead dip 44 lead plcc w/o 12 leads 28 lead soic (wide body) ir2132 ir2132j ir2132s part number
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-169 lead symbol description logic inputs for high side gate driver outputs (ho1,2,3), out of phase logic inputs for low side gate driver output (lo1,2,3), out of phase indicates over-current or undervoltage lockout (low side) has occurred, negative logic v cc low side and logic fixed supply itrip input for over-current shutdown cao output of current amplifier ca- negative input of current amplifier v ss logic ground v b1,2,3 high side floating supplies ho1,2,3 high side gate drive outputs v s1,2,3 high side floating supply returns lo1,2,3 low side gate drive outputs v s0 low side return and positive input of current amplifier functional block diagram lead definitions lin1,2,3 hin1,2,3 fault
ir2132 b-170 c ontrol i ntegrated c ircuit d esigners? m anual thickness of gate oxide 800 ? connections material poly silicon first width 4 m layer spacing 6 m thickness 5000? material al - si (si: 1.0% 0.1%) second width 6 m layer spacing 9 m thickness 20,000? contact hole dimension 8 m x 8 m insulation layer material psg (sio 2 ) thickness 1.5 m passivation material psg (sio 2 ) (1) thickness 1.5 m passivation material proprietary* (2) thickness proprietary* method of saw full cut method of die bond ablebond 84 - 1 wire bond method thermo sonic material au (1.0 mil / 1.3 mil) leadframe material cu die area ag lead plating pb : sn (37 : 63) package types 28 lead pdip & soic / 44 lead plcc materials eme6300 / mp150 / mp190 remarks: * patent pending device information process & design rule hvdcmos 4.0 m transistor count 700 die size 126 x 175 x 26 (mil) die outline
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-171 figure 3. deadtime waveform definitions figure 4. input/output switc hing time waveform definitions figure 1. input/output timing diagram figure 2. floating supply v oltage transient test circuit figure 5. overcurrent shutdown switc hing time waveform definitions figure 6. diagnostic feedback operational amplifier circuit cao v s0 ca- v ss v cc v ss + - lo1,2,3 ho1,2,3 itrip dt dt t r t on t off t f 50% 50% 90% 90% 10% 10% 50% 50% 50% 50% 50% 50% 50% 50% 50% t flt t itr ip t fltclr fault lin1,2,3 hin1,2,3 fault hin1,2,3 lin1,2,3 ho1,2,3 lo1,2,3 lin1,2,3 itrip lo1,2,3 hin1,2,3 lin1,2,3 lo1,2,3 ho1,2,3 ir2132
ir2132 b-172 c ontrol i ntegrated c ircuit d esigners? m anual measure v cao1 at v s0 = 0.1v v cao2 at v s0 = 5v cmrr = -20 * log measure v cao1 at v cc = 10v v cao2 at v cc = 20v psrr = -20 * log v cao1 - v cao2 figure 9. operational amplifier common mode rejection ratio measurements figure 10. operational amplifier power supply rejection ratio measurements figure 11b. turn-on time vs. v oltage figure 11a. turn-on time vs. temperature figure 7. operational amplifier slew rate measurement figure 8. operational amplifier input offset voltage measurement cao v s0 ca- v ss v cc 15v - + cao + v s0 v cc v ss 1k 20k ca- + - 0.2v (10v) (21) cao + v s0 v cc v ss 0.2v 1k 20k ca- 15v + - v cao 21 - 0.2v v os = (v cao1 -0.1v) - (v cao2 -5v) 4.9v (db) cao v s0 ca- v ss v cc 15v 50 pf + - 0v 3v 90% 10% 0v 3v d t1 d t2 d v d v d t1 sr+ = d v d t2 sr- = 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) t urn-on delay time ( s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) t urn-on delay time ( s) max. typ. min.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-173 figure 14a. turn-off f all time vs. temperature figure 14b. turn-off f all time vs. v oltage figure 12a. turn-off time vs. temperature figure 12b. turn-off time vs. v oltage figure 13a. turn-on rise time vs. temperature figure 13b. turn-on rise time vs. v oltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) t urn-off delay time (s ) typ. min. max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) t urn-off delay time (s ) max. typ. min. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) turn-on rise time (n s) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) turn-on rise time (n s) max. typ. 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 temperature (c) t urn-off fall time (ns ) typ. max. 0 25 50 75 100 125 10 12 14 16 18 20 v bias supply voltage (v) t urn-off fall time (ns ) max. typ.
ir2132 b-174 c ontrol i ntegrated c ircuit d esigners? m anual figure 16a. itrip to fault indication time vs. temperature figure 16b. itrip to fault indication time vs. voltage figure 15b. itrip to output shutdown time vs. v oltage figure 15a. itrip to output shutdown time vs. temperature figure 17a. lin1,2,3 to fault clear time vs. temperature figure 17b. lin1,2,3 to fault clear time vs. v oltage 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) itrip to output shutdown delay time (s ) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) itrip to output shutdown delay time (s ) max. typ. min. 0.0 5.0 10.0 15.0 20.0 25.0 -50 -25 0 25 50 75 100 125 temperature (c) l in1,2,3 to fault clear time ( s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v cc supply voltage (v) i trip to fault indication delay time ( s) max. typ. min. 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) i trip to fault indication delay time ( s) typ. min. max. 0.0 5.0 10.0 15.0 20.0 25.0 10 12 14 16 18 20 v cc supply voltage (v) l in1,2,3 to fault clear time ( s) max. typ. min.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-175 figure 19a. amplifier slew rate (+) vs. temperature figure 19b. amplifier slew rate (+) vs. voltage figure 18a. deadtime vs. temperature figure 18b. deadtime vs. voltage figure 20a. amplifier slew rate (-) vs. temperature figure 20b. amplifier slew rate (-) vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate + (v/ s) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate + (v/ s) min. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate - (v/ s) typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate - (v/ s) min. typ. 0.00 0.50 1.00 1.50 2.00 2.50 -50 -25 0 25 50 75 100 125 temperature (c) d eadtime (s ) typ. min. max. 0.00 0.50 1.00 1.50 2.00 2.50 10 12 14 16 18 20 v bias supply voltage (v) deadtime (s ) max. typ. min.
ir2132 b-176 c ontrol i ntegrated c ircuit d esigners? m anual figure 22a. logic 1 input threshold vs. temperature figure 22b. logic 1 input threshold vs. voltage figure 21a. logic 0 input threshold vs. temperature figure 20b. logic 0 input threshold vs. voltage figure 23a. itrip input positive going threshold vs. temperature figure 23b. itrip input positive going threshold vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) itrip input positive going threshold (mv ) typ. min. max. 0 150 300 450 600 750 10 12 14 16 18 20 v cc supply voltage (v) i trip input positive going threshold (mv ) max. typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "0" input threshold (v ) min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) l ogic "0" input threshold (v ) min. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "1" input threshold (v ) max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) l ogic "1" input threshold (v ) max.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-177 figure 25a. low level output vs. temperature figure 25b. low level output vs. voltage figure 24a. high level output vs. temperature figure 24b. high level output vs. voltage figure 26a. offset supply leakage current vs. temperature figure 26b. offset supply leakage current vs. v oltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) h igh level output voltage (v ) max. 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) l ow level output voltage (v ) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) h igh level output voltage (v ) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) l ow level output voltage (v ) max. 0 100 200 300 400 500 0 100 200 300 400 500 600 v b boost voltage (v) o ffset supply leakage current (a ) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) o ffset supply leakage current (a ) max.
ir2132 b-178 c ontrol i ntegrated c ircuit d esigners? m anual figure 28a. v cc supply current vs. temperature figure 28b. v cc supply current vs. v oltage figure 27a. v bs supply current vs. temperature figure 27b. v bs supply current vs. v oltage figure 29a. logic 1 input current vs. temperature figure 29a. logic 1 input current vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) v bs supply current (a ) typ. max. 0 20 40 60 80 100 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current (a ) max. typ. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc supply current (ma ) typ. max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current (ma ) max. typ. 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "1" input bias current (ma ) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) l ogic "1" input bias current (ma ) max. typ.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-179 figure 31a. high itrip current vs. temperature figure 31b. high itrip current vs. voltage figure 30a. logic 0 input current vs. temperature figure 30b. logic 0 input current vs. voltage figure 32a. low itrip current vs. temperature figure 32b. low itrip current vs. voltage 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "high" itrip bias current (a ) max. typ. 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "0" input bias current (ma ) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) l ogic "0" input bias current (ma ) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) " low" itrip bias current (na ) max. 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "low" itrip bias current (a ) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) "high" itrip bias current (a ) typ. max.
ir2132 b-180 c ontrol i ntegrated c ircuit d esigners? m anual figure 35. v cc undervoltage (+) vs. temperature figure 36. v cc undervoltage (-) vs. temperature figure 33. v bs undervoltage (+) vs. temperature figure 34. v bs undervoltage (-) vs. temperature figure 37a. fault low on resistance vs. temperature figure 37b. fault low on resistance vs. voltage 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout + (v ) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout - (v ) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout + (v ) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout - (v ) typ. min. max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) f ault- low on resistance (ohm s) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v cc supply voltage (v) f ault- low on resistance (ohm s) max. typ.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-181 figure 39a. output sink current vs. temperature figure 39b. output sink current vs. voltage figure 38a. output source current vs. temperature figure 38b. output source current vs. v oltage figure 40a. amplifier input offset vs. temperature figure 40b. amplifier input offset vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) o utput sink current (ma ) min. typ. 0 125 250 375 500 625 750 10 12 14 16 18 20 v bias supply voltage (v) o utput sink current (ma ) min. typ. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) o utput source current (ma ) min. typ. 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) o utput source current (ma ) min. typ. 0 10 20 30 40 50 10 12 14 16 18 20 v cc supply voltage (v) a mplifier input offset voltage (mv) max. 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 temperature (c) amplifier input offset voltage (mv ) max.
ir2132 b-182 c ontrol i ntegrated c ircuit d esigners? m anual figure 42a. amplifier cmrr vs. temperature figure 42b. amplifier cmrr vs. voltage figure 41a. ca- input current vs. temperature figure 41b. ca- input current vs. v oltage figure 43a. amplifier psrr vs. temperature figure 43b. amplifier psrr vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) ca- input bias current (na ) max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) ca- input bias current (na ) max. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier cmrr (db ) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) a mplifier cmrr (db ) min. typ. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) a mplifier psrr (db ) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier psrr (db ) min. typ.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-183 figure 45a. amplifier low level output vs. temperature figure 45b. amplifier low level output vs. voltage figure 44a. amplifier high level output vs. temperature figure 44b. amplifier high level output vs. voltage figure 46a. amplifier output source current vs. temperature figure 46b. amplifier output source current vs. voltage 4.50 4.80 5.10 5.40 5.70 6.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier high level output voltage (v ) typ. min. max. 4.50 4.80 5.10 5.40 5.70 6.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier high level output voltage (v ) max. typ. min. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) a mplifier low level output voltage (mv ) max. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) a mplifier low level output voltage (mv ) max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) a mplifier output source current (ma ) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) a mplifier output source current (ma ) typ. min.
ir2132 b-184 c ontrol i ntegrated c ircuit d esigners? m anual figure 48a. amplifier output high short cir cuit current vs. temperature figure 48b. amplifier output high short cir cuit current vs. voltage figure 47a. amplifier output sink current vs. temperature figure 47b. amplifier output sink current vs. voltage figure 49a. amplifier output low short circuit current vs. temperature figure 49b. amplifier output low short circuit current vs. voltage 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) o utput high short circuit current (ma ) typ. max. 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) output low short circuit current (ma ) max. typ. 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) o utput high short circuit current (ma ) max. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) a mplifier output sink current (ma ) typ. min. 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) output low short circuit current (ma ) typ. max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) a mplifier output sink current (ma ) typ. min.
ir2132 c ontrol i ntegrated c ircuit d esigners? m anual b-185 figure 52. ir2132 t j vs. frequency (irf840) r gate = 15 w w w w w , v cc = 15v figure 53. ir2132 t j vs. frequency (irf450) r gate = 10 w w w w w , v cc = 15v figure 50. ir2132 t j vs. frequency (irf820) r gate = 33 w w w w w , v cc = 15v figure 51. ir2132 t j vs. frequency (irf830) r gate = 20 w w w w w , v cc = 15v figure 54. maximum v s negative offset vs. v bs supply vo l t ag e 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) j unction temperature (c ) 32 0v 16 0v 0v 48 0v 20 40 60 80 100 1e+2 1e+3 1e+4 1e+5 frequency (hz) j unction temperature (c ) 32 0v 16 0v 0v 48 0v 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) j unction temperature (c ) 32 0v 16 0v 0v 48 0v 20 40 60 80 100 120 140 1e+2 1e+3 1e+4 1e+5 frequency (hz) j unction temperature (c ) 32 0v 16 0v 0v 48 0v -15.0 -12.0 -9.0 -6.0 -3.0 0.0 10 12 14 16 18 20 v bs floating supply voltage (v) v s offset supply voltage (v ) typ.


▲Up To Search▲   

 
Price & Availability of IR2132STR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X